
The History of Loop and LoopKit
Reflecting on the past in celebration of version 1.0.

Nate Racklyeft · Follow

9 min read · Oct 2, 2016

463 3

Part 1: Vision
On July 21, 2015, I first placed my trust in a collection of Python scripts I
wrote to automate my insulin needs for Type 1 diabetes. Every 5 minutes
since then—while I’ve worked, slept, vacationed, commuted—code has been
the primary interface to my treatment of this chronic condition.

The first system to run it was a Raspberry Pi; the code was a series of
plugins, written with the help of Chris Hannemann, to the openaps toolkit
developed by Ben West in collaboration with Dana Lewis and Scott Leibrand.
I’m still in awe of the elegant premise in Ben’s design: a system of repeatable,
recordable, and extendable transform commands, all backed by Git. The
central plugin of the toolkit is decocare: Ben’s 5-year magnum opus, a reverse-
engineered protocol of the Minimed Carelink USB radio to command insulin
pumps.

Pete Schwamb had a vision for an entirely different system, and the skill-set
to bring it to life. He designed a clone of the Carelink radio and bridged it to
a Bluetooth Low-Energy interface, opening the door for a diverse set of BLE-
compatible devices, like his iPhone, to talk to an insulin pump.

Open in app

Search Write
33

https://medium.com/@loudnate?source=post_page-----59b3caf13805--------------------------------
https://medium.com/@loudnate?source=post_page-----59b3caf13805--------------------------------
https://github.com/loudnate/openaps-mmhistorytools
https://github.com/loudnate/openaps-predict
https://bitbucket.org/loudnate/openaps-dose
https://github.com/openaps/openaps
https://openaps.org/
https://github.com/bewest/decoding-carelink
https://medium.com/u/6848d6fdbe84?source=post_page-----59b3caf13805--------------------------------
https://medium.com/u/c2b84002f43e?source=post_page-----59b3caf13805--------------------------------
https://medium.com/u/d7681c31c435?source=post_page-----59b3caf13805--------------------------------
https://medium.com/u/9eb7d68b0a97?source=post_page-----59b3caf13805--------------------------------
https://twitter.com/ps2
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F59b3caf13805&%7Efeature=LiOpenInAppButton&%7Echannel=ShowPostUnderUser&source=---two_column_layout_nav----------------------------------
https://medium.com/?source=---two_column_layout_nav----------------------------------
https://medium.com/new-story?source=---two_column_layout_nav----------------------------------
https://medium.com/me/notifications?source=---two_column_layout_nav----------------------------------


Master of many things, including time travel.

I quickly co-opted Pete’s vision as my own. I got my first “RileyLink” the
same week I started “looping” with the Raspberry Pi. “I’m done,” I told my
wife, “now I’m going to rebuild it all.”

Pete Schwamb on Twitter

@danamlewis Maybe someday it will look like this! :)

https://github.com/ps2/rileylink


Pete had written a significant portion of the initial Bluetooth code in an iOS
app which captured and uploaded Minimed sensor values to Nightscout, but
there were still a lot of infrastructure questions to validate:

1. Will a background app run reliably on iOS?

2. What will the battery impact be?

3. How much data should be stored, and where?

Any large project is going to face questions like this. One thing that’s served
me well in the past is to avoid answering the foundational framework
questions as long as possible. Often these questions answer themselves as
the upper parts of the stack take shape. Months later, a colleague would
share this great post on Lug-Nut Development that described this philosophy
so perfectly.

So, using Pete’s RileyLink code, I took my sensor values and started putting
them into UI, using Apple Health and a simple Apple Watch app.

https://github.com/ps2/rileylink_ios
https://github.com/ps2/rileylink_ios
http://nightscout.info/
https://medium.com/@belisarius222/how-to-start-a-software-project-ad51373c1510


I deferred most app architecture while building HealthKit and watchOS 2 integrations



The app displaying transient data from the RileyLink

Though my intention was to try to make the small amount of data I had
useful, I also inadvertently learned the quirks of the HealthKit and
WatchConnectivity frameworks which would prove informative much later
in architecture design.

Two much larger roadblocks appeared first:



1. The original RileyLink crystal oscillator couldn’t create the right
frequency for longer radio messages needed to control a pump.

2. I received one of the first shipments of the Dexcom G5 CGM and nobody
had any idea how to connect to it.

Pete discovered and diagnosed the frequency issue, and like a champion,
offered folks to ship him back all of the dozens of existing boards. He
replaced each crystal on his reflow workstation, and tested each board by
sending a “button press” command to turn on the screen backlight, the
delight of each flicker rivaling Edison’s bulb. He can tell you the rest of that
story.

The G5 CGM was a critical piece of Pete’s vision to minimize the carry bulk.
But a new device meant a new protocol to decode, and a very small user base
available to collaborate. In addition, I had a hard release date I needed to hit:
a trip to Costa Rica. Apple Watch could certainly handle the tropical
humidity better than my iPhone, and the goal was to read G5 glucose data
directly from the transmitter and shuttle it onto the watch, without the use
of an internet connection, in time for the vacation.

http://www.prnewswire.com/news-releases/fda-approves-dexcom-g5-mobile-continuous-glucose-monitoring-system-300132661.html
https://twitter.com/ps2/status/644714370761551872


Goal met.

80’s musical montage of November 2015: from sniffing, to prototyping, to the beach



With an upgraded RileyLink and G5 data flowing, it was time to start to
consider those architecture questions, starting with battery and background
time.

There’s two generations of insulin pumps which can accept remote
commands. The later generation has a feature which broadcasts its status
every 5 minutes, which is the basis of the MySentry and Connect products.
(The latter fulfills essentially the same function as the RileyLink, though it

Nate Racklyeft on Twitter

Happy new year! xDripG5 is now available using Carthage and @CocoaPods. Build
cool apps with live glucose data! https://t.co/hkdtrxj97S

http://www.healthline.com/diabetesmine/mysentry-a-new-category-of-diabetes-device#1
http://www.medtronicdiabetes.com/products/minimed-connect


was released to the public later). Capturing this broadcast would mean fewer
power-hungry communication sessions with the pump, reserving resources
only for the times when a dosing change was necessary.

This broadcast includes the pump’s reservoir volume, which, when stored
over time, should be sufficient to know how much active insulin was
currently in the body. To validate this premise, I went back to my Raspberry
Pi and started capturing and experimenting with this data source, simulating
the lower resolution (0.1 U) values compared to what was available in pump
history (0.025 U).

https://github.com/loudnate/openaps-mmhistorytools/pull/44/files?diff=unified


An early test comparing IOB from reservoir to IOB from pump history. The sawtooth pattern is an effect of the
simulated resolution difference.



This visualization was extremely useful, and exposed a bug or two my unit
tests missed.

With blood glucose and insulin data ready, the final input to the equation
was carbohydrates. I wanted to use HealthKit for this data, as there are so
many great meal and ingredient databases in the App Store that store
carbohydrates in HealthKit. It seemed like a perfect match to be able to use
them right in my app’s algorithm.

At the same time, I couldn’t imagine a better input mechanism for entering
food than my watch. Building both ends simultaneously surfaced some
unexpected challenges around encryption states in HealthKit.

Food was the final input. Note that the CGM was in a bad calibration state; glucose wasn’t actually 9 mg/dL.



By early February, I could input all the data I needed, and I’d started
exploring storage and retrieval. I was also getting a better picture of the
phone’s battery life: ~4 hours of daily background time, consuming ~15% of
a full charge.

Validating the algorithms I originally wrote in Python started with porting
over the suite of unit tests (using the same JSON fixtures in both codebases),
but it also required me personally trusting all the points of integration that
were harder to test. I knew I could achieve that trust by simultaneously
building the graphs as I built the algorithm.



For the next two weeks, the iOS loop was running alongside the Raspberry
Pi, and I was continuously comparing the visualizations and looking for edge
cases. On March 13, I shut down the Raspberry Pi (to never turn it back on)
and gave control to my app. I teased the moment on Twitter:

The graphs took shape simultaneously with the data storage and analysis



Symbolizing the 15 years since my first insulin pump, on the eve of the next phase.

Once I was sure it was working, I started showing off.

Nate Racklyeft on Twitter

Evolution #WeAreNotWaiting https://t.co/N2ylomLqsN



Nate Racklyeft on Twitter

I'm now at 24 straight hours of iOS looping powered by @ps2's RileyLink, xDripG5,
and LoopKit!



Part 2: Sharing
As the celebration faded, many wise people asked me if I was done. Those
who watched me trade time with family, friends, and every hobby I had to
pursue this project were right to challenge me on what I’d do next. I wanted
to listen, but I also didn’t know how to stop.

Nate Racklyeft on Twitter

Breakfast bolus from my Apple Watch https://t.co/ur62ic8yxB



It was clear that just a collection of frameworks—LoopKit, MinimedKit,
xDripG5, and RileyLinkKit—weren’t enough to help others use the project.
While the containing app was also open source, I cautioned that it should be
used only as an example. This advice was understandably ignored by others:
iOS development has a barrier of entry larger than most can tackle in their
free time.

What that meant was that the app, now known as simply “Loop”, would need
to expand in device support, safety features, and remote connectivity to
satisfy the needs of prospective users. Some of this was graciously taken on
by Mark Wilson (G4 glucose via Bluetooth & HTTP) and Pete Schwamb
(Nightscout monitoring). Instead of slowing down, my time spent
committing code and supporting users continued at the same level it was
during initial development.

The evolution of Loop’s status screen

https://github.com/LoopKit/Loop
https://medium.com/u/d5c1fe8a2869?source=post_page-----59b3caf13805--------------------------------


There were many proud moments.

Ali Mazaheri on Twitter

First day at school with Loop @loudnate @ps2 @bewestisdoing



Howard Look on Twitter

Ready for the first day of school with Loop and RileyLink. Thanks @loudnate @ps2
@OpenAPS



Eric Matthews on Twitter

Loop with new #rileylink helping my daughter manager her #T1D during school.
Thanks @ps2 and @loudnate



Part 3: Burden
In my setup instructions for Loop, I told users,

You might open this app a lot. Make it the most personal app on your iPhone
by changing the name and icon.

It was a personal app for a lot of people, and the questions, opinions, and
imperatives rolled-in from users and non-users alike in the chat room.
Thanks to users in far-off time zones, there were always new messages to
read. It didn’t take long before I felt overwhelmed. Thankfully long-time

Katie DiSimone on Twitter

Today we started #Loop. Tested it last night with a not-low-carb meal and wow! I
could cry happy tears @loudnate @ps2 THANK YOU



users tried their best to answer as many questions and criticisms as they
could, allowing me to focus the time I had on coding fixes.

It hadn’t realized that passion projects could outlive their passion, but it
happens every day in open-source projects. Loop was going to be an endless
“loop” of development unless I took steps to slow down.

I thought of Loop as “My” project. It was my rejection of Design-By-
Committee open-source. At times, it didn’t play well with others’ ideas (even
when they were good). I never pre-announced features, or created spaces for
feedback. I shouldered all of Loop’s secrets, as well as all of its criticisms.
Neither were a burden anybody asked me to bear. I needed to relinquish
control of Loop to regain control over my time.

Part 4: 1.0

Version 1.0 is an end-cap to a difficult but rewarding era of development.
The project—its features, faults, and future—now belongs to the community
of users. Pete Schwamb and Mark Wilson have graciously agreed to
coordinate pull requests and code reviews. Chris Hannemann will lend a
hand to coordinate features and issues. They are ready and eager to
nominate additional collaborators.

The promise of an automated insulin delivery system is to reduce the time
and cognitive load spent on diabetes, and Loop seeks to deliver it with its
glanceable interface, seamless connectivity, and the compact package of the
RileyLink.

It’s time for me to finally realize that promise personally: I’ll be stepping
down from development after the release. My passion for health and
wellness projects will continue, professionally, as I join the team at Apple.

https://medium.com/u/d5c1fe8a2869?source=post_page-----59b3caf13805--------------------------------
https://medium.com/u/6848d6fdbe84?source=post_page-----59b3caf13805--------------------------------


I want to thank the developers and tinkerers who’ve been tackling Type 1
diabetes with software and hardware for years. You can ask Scott Hanselman
who they are: they paved the way for Ben West to make the single-greatest
patient innovation in Type 1 diabetes. Thank you to Pete Schwamb, whose
unmatched ingenuity led to solutions for the most difficult problems. Thank
you to Chris Hannemann, Ken Stack, and Gustavo M. whose algorithmic and
instructional expertise was foundational to the most critical code in my
projects. Thank you to Dana Lewis and Scott Leibrand for creating a vibrant
community around artificial pancreas devices.

Most of all, thank you to the Loop users for your passion and trust. I can’t
wait to see what you build next.

Loop and LoopKit: Version 1.0

medium.com

Some rights reserved

Diabetes Healthcare

https://medium.com/u/1e5b2bca5b5e?source=post_page-----59b3caf13805--------------------------------
https://medium.com/u/c2b84002f43e?source=post_page-----59b3caf13805--------------------------------
https://medium.com/u/6848d6fdbe84?source=post_page-----59b3caf13805--------------------------------
https://medium.com/u/ddeb89a713e9?source=post_page-----59b3caf13805--------------------------------
https://medium.com/u/d7681c31c435?source=post_page-----59b3caf13805--------------------------------
https://medium.com/u/9eb7d68b0a97?source=post_page-----59b3caf13805--------------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805--------------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805--------------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805--------------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805--------------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805--------------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805--------------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805--------------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805--------------------------------
https://medium.com/tag/diabetes?source=post_page-----59b3caf13805---------------diabetes-----------------
https://medium.com/tag/healthcare?source=post_page-----59b3caf13805---------------healthcare-----------------
http://creativecommons.org/licenses/by/4.0/


Written by Nate Racklyeft
127 Followers

Follow

More from Nate Racklyeft

Nate Racklyeft

Loop and LoopKit: Version 1.0
Loop and LoopKit have reached 1.0 after just over a year in
development. Loop uses RileyLink, a CGM, and an insulin pump
to automate…

1 min read · Oct 2, 2016

21 1

See all from Nate Racklyeft

Recommended from Medium

https://medium.com/@loudnate?source=post_page-----59b3caf13805--------------------------------
https://medium.com/@loudnate?source=post_page-----59b3caf13805--------------------------------
https://medium.com/@loudnate/followers?source=post_page-----59b3caf13805--------------------------------
https://medium.com/@loudnate?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?responsesOpen=true&sortBy=REVERSE_CHRON&source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate/loop-and-loopkit-version-1-0-8e3fd3280433?source=post_page-----59b3caf13805----0----------------------------
https://medium.com/@loudnate?source=post_page-----59b3caf13805--------------------------------

