
Member-only story

Insulin Pumps, Decapped chips and
Software Defined Radios

Pete Schwamb · Follow

17 min read · Apr 24, 2019

673 5

Reverse Engineering an Insulin Pump for DIY Closed Loop Therapy

Roughly 3 years ago, I heard about a website offering a bounty for something
that was very close to my heart: reverse engineering communications to an
insulin pump. My daughter was already using a system that I had helped to
create called Loop, with a Medtronic pump that I had reverse engineered the
RF comms for¹. But the Medtronic pump required her to disconnect during
her gymnastics for hours at a time. The tubeless design of this Omnipod
pump sounded great, and I had all the tools to start working on the problem.

The Omnipod system consists of a small disposable pump called a pod, and a
controlling unit called a PDM.

Open in app

Search Write
33

https://medium.com/@ps2?source=post_page-----1be50f121d05--------------------------------
https://medium.com/@ps2?source=post_page-----1be50f121d05--------------------------------
https://medium.com/@loudnate/the-history-of-loop-and-loopkit-59b3caf13805
https://loopkit.github.io/loopdocs/
https://rsci.app.link/?%24canonical_url=https%3A%2F%2Fmedium.com%2Fp%2F1be50f121d05&%7Efeature=LiOpenInAppButton&%7Echannel=ShowPostUnderUser&source=---two_column_layout_nav----------------------------------
https://medium.com/?source=---two_column_layout_nav----------------------------------
https://medium.com/new-story?source=---two_column_layout_nav----------------------------------
https://medium.com/me/notifications?source=---two_column_layout_nav----------------------------------

Because the PDM communicates with the pod using radio and the pod has
no built in interface, it means the pod is entirely controllable over the radio.
There was the potential to create a full integration with Loop using just a
RileyLink, or a modified version of it.

James Wedding had put up the bounty, and it attracted a lot of attention, and
ultimately the right people who would be needed to make progress.

Software Defined Radio

SDRs are awesome tools; they make the hidden world of radio visible. There
are all kinds of messages zipping by all the time, and these tools let you poke
around, see the messages, and with some work, start decoding the little blips
you see there. If you’re looking for messages from a specific device, you need
to know what general area to start looking in. That’s where the FCC public
filings come in handy.

https://getrileylink.org/
https://github.com/jwedding
https://www.amazon.com/NooElec-NESDR-Mini-Compatible-Packages/dp/B009U7WZCA

The FCC filing for the PDM, RBV-019, shows that the device transmits in the
433MHz range. Configuring the SDR software to listen in the 433MHz range
while issuing a status from the PDM shows comms like this:

As I eventually learned, those two bright lines are indicative of a certain type
of modulation called frequency shift keying, or FSK. This means that the
frequency of the signal varies with the information being transmitted. A 1 bit
is sent as a higher frequency (the top line) and a 0 bit is sent with a slightly
lower frequency (the bottom line). And using the tool inspectrum we can
have it analyze the data to more clearly show the 1’s and 0’s. Here’s a very
zoomed in view of that first message above:

https://fccid.io/RBV-019
https://en.wikipedia.org/wiki/Frequency-shift_keying
https://github.com/miek/inspectrum

I ended up writing a python script to extract these bits so we could look at
them as a whole packet.

It turns out this repeating pattern was part of the preamble. To conserve
energy, receivers often have a pattern of sleeping, and waking up
periodically to check for a signal. The transmitter sends a preamble long
enough to catch the receiver during one of the short listening periods. When
the receiver hears the preamble, it stays awake until the real data shows up.

There was one more layer we had to get through before we were looking at
actual packet data. You can’t send your data over the radio exactly as the
original bits, because the receiver uses the transitions to synchronize in time
when to expect the next bit. If you have a long set of 1’s or 0’s, the receiver
could get out of sync. So radio communications usually use an encoding to
make sure there are enough transitions. The Omnipod communications use
an encoding called Manchester encoding. Each bit is encoded by two bits. A
1 bit is encoded as 10, and a 0 bit is encoded as 01.

This all took a lot of hashing out and there were a lot of theories shared in
the openomni slack, as we tried to make getting the raw bits repeatable.
Mark Brighton, Dan Caron, and @larsonlr, had been having some success
with using RFCat and a TI Stick to capture packets. Evariste Courjaud would
eventually write a tool called rtlomni used an rtl-sdr stick to listen for
packets and decode them that would prove to be very convenient and more
reliable than the TI-Stick based methods.

Decoding Packets

Once we had the actual bits of the packet, we started to look into packet
structure. Based on what bits were changing between different pods, and
different commands, we pieced together an understanding that looked like
this.

https://en.wikipedia.org/wiki/Syncword
https://en.wikipedia.org/wiki/Manchester_code
https://omniaps.slack.com/
https://github.com/seattlebrighton
https://github.com/dancaron
https://github.com/larsonlr
https://github.com/atlas0fd00m/rfcat
https://www.digikey.com/product-detail/en/texas-instruments/CC2540EMK-USB/296-30820-ND
https://twitter.com/f5oeoevariste
https://github.com/F5OEO/rtlomni

CRC8

Radio is a far from perfect transmission medium. There are many different
sources of interference that can make the receiver hear a 1 when a 0 was
sent, and vice versa. It’s important to know when this has happened, so most
protocols use a checksum of sorts, often something called a CRC. The
receiver computes the CRC as it receives the data, and the last byte of the
packet includes the CRC as the transmitter computed it. If they don’t match,
the receiver throws the packet away and waits for a retransmission.

The Omnipod protocol used a standard 8-bit CRC, so when we found this, we
thought we were really close to having the messages figured out. Little did
we know…

Messages, CRC16

Some messages are too big to fit into a single packet, so they are sent as
multiple packets. We started to piece together the format of messages, and
noticed another set of bits at the end of each message that looked like a 16-
bit crc. But it was weird; 5 of the 16 bits were never set. We tried many

https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://www.cosc.canterbury.ac.nz/greg.ewing/essays/CRC-Reverse-Engineering.html

different techniques to figure out how this was being set, but nothing
worked.

This was the first big blocker; we could proceed to work out what the other
bits in the messages were, but it would be little help to understand what was
being sent, but not be able to generate new packets ourselves, and so
progress slowed down.

Months passed with little progress, and finally in winter of 2016 a member of
the group with the handle @lorelai posted that she had sucessfully dumped
the firmware from the larger ARM-based chip on the PDM, and started the
tedious process of disassembly: taking cpu instructions and turning them
into human understandable code with semantic variable and function
names. She did an amazing job figuring out what various methods were
involved in sending data over the radio.

I was looking at one of the unnamed routines, and noticed it looked like a
standard implementation of a table based CRC calculation. And the table had
the values for a standard 16 bit CRC. I wrote my own implementation using
the table, and it checked out like a normal CRC. Then I looked closely at how
the function was written. A normal CRC implementation looks like this:

while (len--) {
 crc = (crc << 8) ^ crctable[((crc >> 8) ^ *c++)];
}

Theirs looked like this:

while (len--) {
 crc = (crc >> 8) ^ crctable[((crc >> 8) ^ *c++)];
}

https://www.cosc.canterbury.ac.nz/greg.ewing/essays/CRC-Reverse-Engineering.html
https://twitter.com/lorelai_l

Spot the difference? What should’ve been a bitwise left shift operator had
somehow been coded as a right shift. This is a bug; there is no reason to
cripple your own CRC algorithm, as it makes it less likely to catch corrupted
messages.

We were up and running again! We started working on decoding messages,
recording sessions from the PDM for delivering boluses, temp basals,
suspends, etc…

Nonce

All of the insulin delivery commands had a 4-byte chunk of data near the
beginning of the message that looked like it might be some form of
cryptography. Again, we tried many different ways of interpreting it, and
analyzing it in the context of the messages it was sent in, but it wasn’t a crc
(we’d see the same 4 bytes on occasion even when the message data was
different). And sometimes we’d see the pattern repeat. It looked maybe this
was a bit of the protocol designed to prevent replay of data. Other protocols
had features like this, called a nonce.

One possible route we had considered was to record a database of messages
to replay for given commands. Even if the address of each pod was different,
now that we knew how to generate the message crc, we could take a copy of
the command we had seen before, put a new address on the message, and
recompute the crc. Except this nonce was preventing us from using that
strategy. For the next insulin delivery command, no matter what command
was sent, the pod would only accept the next nonce in the sequence, and we
didn’t know how to generate the next nonce.

But hey! We have the decompiled PDM firmware now, we can just look there!
So we pored over the PDM firmware, and tracked down the message
generation in the code, and found where those four bytes should be. But
instead of a method computing some cryptographic Nonce, we just found

https://en.wikipedia.org/wiki/Cryptographic_nonce

the four characters “INS.”. WTF?!?! Ok, somehow this area of the message
must be being updated later in the pipeline.

There was another chip on the PDM, closer to the radio. It was the same chip
that was used in the Pods, a chip with an identifier of SC9S08ER48,
something that wasn’t documented online, and was likely produced custom
for Insulet. Maybe we could get the firmware off of that chip. Unfortunately,
that chip was locked, which prevented dumping of firmware.

Again, progress slowed… This felt like a real dead end. We had thrown all
our smarts at this nonce, and didn’t have any good leads on the math that
was behind it. And the ER48 that (possibly) held the secrets was locked and it
was hard to find any public details that might help us crack it.

X-Ray images

In trying to understand more about the ER48, some members of the slack
community offered to try to get Xray images, which was really cool, but
unfortunately didn’t open up any new avenues.

Overview Xray

Detail Xray

Decapping and Imaging

Dan Caron decided to reach out to a researcher, Dr. Sergei Skorobogatov, at
the University of Cambridge in the UK that he had read about who had
experience in extracting code from locked chips, and convinced him to take
a look at our problem. Dr. Skorobogatov had led research in using SEM
(Scanning Electron Microscopy) for chip reverse engineering and suggested
it might be possible, but would be expensive, needing access to expensive
equipment, and not guaranteed. Joe Moran, who had recently started using
Loop after we met at the Fall 2016 Nightscout Hackathon dove in to helping
out with this project, and arranged with a bay area company, Nanolab
Technologies, to perform the decapping and imaging of the chips, and also
graciously funded Nanolab and Dr Skorobogatov’s work (and also his
personal boxes of pods).

https://github.com/dancaron
https://www.cl.cam.ac.uk/~sps32/
https://github.com/itsmojo

Dr. Skorobogatov had Nanolab perform a variety of imaging techniques to
ascertain if the protection could be defeated with known non-invasive or
semi-invasive methods. This resulted in a lot of images, some of them very
beautiful. These are optical microscope pictures of the silicon die.

Optical microscope die overview

Optical microscope die overview

There were also images taken of specific areas of the die using scanning
electron microscopy. Attempts were made with different voltages, different
surface preparations, and different equipment.

SEM Image of flash memory cells. Not resolving data.

Unfortunately, none of these produced images capable of resolving the
actual contents of the flash.

Dr. Skorobogatov had one last resort method that was only to be used if these
other techniques failed. It was a proprietary method that would have to be
given the blessing to be used by the University. Dr. Skorobogatov did an
initial test and confirmed that it was capable of resolving the data on this
chip. But before we could proceed an NDA had to be agreed upon and so
negotiations about who was to be the recipient of the extracted firmware
were undertaken.

The Nightscout foundation would ultimately be the party signing the NDA
and would take the responsibility to prevent unauthorized disclosure of the
methods and results of the extraction.

The result of this arrangement and work was an incredible paper written by
Dr Sergei Skorobogatov, and the raw firmware data. The initial extraction of
the firmware had a significant number of errors, but was enough to get
started on. Joe asked at the spring Nightscout Foundation Hack if anyone
would be up for digging into the disassembly. Nobody raised their hands.
Turning the cpu instructions into something understandable is painstaking
work, and there are very few people who know how to do it. I tried digging
into it, using cpu instruction documentation, but made very little progress,
and grew frustrated. Others optimistically asked for request to the firmware
with big expectations of fast progress, and then realized the scope and
challenge of the task and quietly dropped off.

Example disassembly of SC908 instructions

It turns out Joe also has an extensive background working at the assembly
level, and started taking on the onerous task himself. In July, Dr.
Skorobogatov had completed a second extraction with much fewer errors.
Over the summer Joe Moran worked tirelessly on mapping out the huge
amount of cpu instructions, and slowly fitting them together into a larger
picture of pod pseudocode.

Eventually, Ken Shirriff, an expert in hardware reverse engineering, would
join the effort and sped up the process considerably. Together, Joe and Ken
eventually mapped out enough code to find the function responsible for
coding the nonce September of 2017.

https://www.nanolabtechnologies.com/wp-content/uploads/2018/04/pod-teardown.pdf
https://www.cl.cam.ac.uk/~sps32/
http://www.righto.com/

RileyLink and Loop

We had been updating the openomni python scripts with our understanding
of the comms, but now it was time to start focusing on RileyLink + iOS, so I
started work on OmniKit, and firmware updates for the RileyLink. I believed
we had the fundamentals of the protocol worked out, and the rest was just
details. Again, completely underestimating how much more was ahead of us.

I had to write new firmware that would handle the pod modulation and
encoding. I also had to rewrite the way the two chips on the RL talked to
each other to handle 0’s, as 0 was a special end of packet marker for
Medtronic. Much in Loop needed to be reworked to support multiple Pumps,
and new interfaces made to support pairing, deactivating, and handling
faults. Thankfully Nate Racklyeft had set a solid foundation in Loop for this
to happen.

Meanwhile, work on understanding the format of the commands continued
and was documented thoroughly on the openomni wiki, which is the most

https://github.com/openaps/openomni
https://medium.com/u/369c4e5ce40d?source=post_page-----1be50f121d05--------------------------------
https://github.com/openaps/openomni/wiki

comprehensive documentation on the pod protocol published publicly. Joe,
Evariste, and Eelke Jager really did a massive amount of work decoding
messages, and updating the pages over time. Various members of the slack
channel have contributed captures of PDM to Pod communications to aid
decoding efforts.

The decoding was fun work, with lots of small wins as each component of
each command is deciphered, and I really enjoyed working on this part, and
adding code to Loop to implement. In April of 2018 I shared on slack that I
had “paired via iPhone + RL, primed, cannula insertion, basal schedule
programmed, and then bolused 5U”.

The 2.0 RL firmware was finished in July of 2018, and new shipments started
including it. It was hoped that these boards would be able to be used with
Loop and Omnipod, but the existing 915 MHz antenna would prove to be too
poor to do 433 MHz comms effectively.

Decoding and implementation was progressed well over the summer, and
the Loop experience was coming together. Joe did an amazing thing in
providing funding for me to quit my day job, and focus more on this project,
and to eventually join the wonderful Tidepool team. There were of course
more events happening outside of the omnipod RE story in the DIY and
regulator spaces that I won’t cover, but it was a very interesting summer!

Screamers

As more functionality came online in the driver, I started hooking it up into
Loop, including the ability to automatically adjust delivery by temp basals.
At this point it was fairly common to get a screaming pod, which meant
some of the pod’s internal checking had detected a situation where it decided
there was a problem and it should not continue to deliver insulin.

But it seemed like a workable problem, as we continued to find small
discrepancies in what Loop was sending versus what the PDM would send if

https://github.com/lytrix

the command was delivered manually, and I assumed if we fixed all of those
that the screaming would stop.

Looping!

On October 3, 2018, Joe put a Loop controlled pod on himself and became
the first Loop Omnipod user, but didn’t tell me immediately as he knew I’d be
worrying. When he did tell me, I still worried. We had seen the pod work,
and understood the functionality, and the basic algorithm of Loop had been
vetted for a long time, but still…

A month later, at the November 2018 Nightscout Hackathon, a few more
adventurous souls opted try it out for themselves as well, and became part of
a small private testing group that would grow to over 30 people before the
branch was made public.

Unfortunately, we still had screamers often happening before the full 3 days
of use were finished, and we had meticulously compared Loop’s commands
to PDM reference versions. Eelke was particularly helpful with this process,
creating a script that could check commands against their reference versions
automatically. I started to get worried that the increased demands on the
battery for doing communication every five minutes had pushed the pod
over the edge of what was sustainable.

Pod voltage taps, drilled through back plastic, super-glued in place.

So I started measuring pod voltage with an arduino, recording the data and
storing it a local database for visualization. Comparing PDM and Loop.

Long time scale view of pod voltage.

Unfortunately, this proved to be a dead end as well; using a PDM and
bolusing large amounts, I could drive the pod to lower voltages than even
Loop would do over the life of a looping pod, and wasn’t able to make the
pod scream. It seemed like voltage wasn’t the issue, so there must be
something else.

RileyLinks with 955 MHz (left) and coil 433 MHz (right) antennas

At one point I noticed that if a message exchange with the pod failed, the pod
would sometimes be left in a state of trying to complete the exchange by re-
sending packets over and over and over. Testers logs were also showing lots
of failures, and so I started experimenting with antennas. Both of these
problems should be improved with better comms. I had planned on trying
different antennas and had ordered from random places on the internet, but
hadn’t had time to try them until it became a priority.

I had some flexible 433 MHz antennas that could be taped on the inside of
the RL case. These would often have great performance in some scenarios,
but not in others; it was too unreliable. When I got to the coil based one, it
had good performance very consistently, and at very surprising ranges. Time
for a new RileyLink case.

With the new antenna, and some optimizations to do fewer message
exchanges while still allowing adjustments every 5 minutes, the frequency of
screamers went down to a very low rate. Likely comparable to using a pod
normally with a PDM. In the most recent 7,500 hours of live testing, 94% of
pods completed without faults.

Testing and Documentation

The testing group grew slowly, which was a great way to continually get new
eyes on the system and see what parts were confusing. These testers put up
with a lot of screaming pods, and contributed in very big ways to making
Loop with Omnipod work better. They did this primarily by sharing issue
reports from each of their pods, whether successful or not.

The issue reports have a message log in them that could be analyzed by the
tool that Eelke built, giving us insight into whether we had any misformatted
commands and also let us gather statistics around certain parts of Loop’s
interaction with the pods.

Marion Barker joined the testing group and added dedicated reporting, and
additional statistics to the progress of testing, and we were able to use her
stats of successful pods vs failures to have a high level view of progress.

Eventually Katie DiSimone joined the testing group, and started a large
restructuring of loopdocs.org to provide documentation for using Loop with
multiple devices. The anticipation around a version of Loop that worked
with Omnipod was incredibly high, and without good documentation, it was
certain that we’d be flooded with the same questions over and over.

New Features For Loop

Omnipod integration required rethinking of some interface elements, and
adding new controls. The pod doesn’t report battery, and there is little a user
can do about a low battery if one were to somehow happen, so displaying a
battery level widget didn’t make sense. Also, without a UI on the pump, the

https://github.com/marionbarker
https://seemycgm.com/
http://loopdocs.org/

user needs to be able to cancel a bolus quickly. The reservoir icon was a
picture of a Medtronic reservoir, so we wanted to rethink that. Thank you to
Paul Forgione for designing the pod logo that now shows reservoir level.

https://twitter.com/paulforgione

Thanks

Thank you to all the people who help make this long road come to a place
where we can share this with others, and realize the goal that we set out to
do a long time ago. I know I didn’t cover everyone, and everything that
happened. That would be impossible in a single post, and for me, since I
only have my experience through this. It’s hard to imagine the total hours
put into this. If you could add them all up, I’m sure it would be shocking. Not
to mention the work that has gone into making the Omnipod itself, which I
imagine dwarfs this effort. So thank you *all*. Also, many of those hours
would otherwise have been spent with families. I really appreciate my wife
and kids being understanding with the time I’ve spent on this, and want to
thank them too.

Sidenotes

I have to mention Joakim Ornstedt, as one of the contributors to openomni
decoding, and also the creator of what is probably actually the first looping
integration with omnipod. He built a device that used optical character
recognition (OCR) on the PDM to get data from the PDM, and wired in digital
button presses to the PDM through another microcontroller. It’s a hard to
scale approach, but very clever, and bypasses a lot of the issues we had to
deal with for an RE based solution. I really admired him for pulling this off,
and getting looping in a tiny fraction of the time it took to make it work with
Loop.

https://github.com/joakimornstedt

[1] Ben West decoded most of the main communication protocol for
Medtronic pumps using a USB Carelink stick. I figured out the RF side of
things, and did some additional work on the protocol.

 Read this story later in Journal.

 Wake up every Sunday morning to the week’s most noteworthy stories in
Tech waiting in your inbox. Read the Noteworthy in Tech newsletter.

Written by Pete Schwamb Follow

Programming SEM Type 1 Diabetes Sdr Health

https://github.com/bewest
https://github.com/openaps/decocare
https://usejournal.com/?utm_source=medium.com&utm_medium=noteworthy_blog&utm_campaign=tech&utm_content=guest_post_image
https://usejournal.com/?utm_source=medium.com&utm_medium=noteworthy_blog&utm_campaign=tech&utm_content=guest_post_image
https://usejournal.com/?utm_source=medium.com&utm_medium=noteworthy_blog&utm_campaign=tech&utm_content=guest_post_image
https://usejournal.com/?utm_source=medium.com&utm_medium=noteworthy_blog&utm_campaign=tech&utm_content=guest_post_read_later_text
https://usejournal.com/newsletter/noteworthy-in-tech/?utm_source=medium.com&utm_medium=noteworthy_blog&utm_campaign=tech&utm_content=guest_post_text
https://medium.com/tag/programming?source=post_page-----1be50f121d05---------------programming-----------------
https://medium.com/tag/sem?source=post_page-----1be50f121d05---------------sem-----------------
https://medium.com/tag/type-1-diabetes?source=post_page-----1be50f121d05---------------type_1_diabetes-----------------
https://medium.com/tag/sdr?source=post_page-----1be50f121d05---------------sdr-----------------
https://medium.com/tag/health?source=post_page-----1be50f121d05---------------health-----------------
https://medium.com/@ps2?source=post_page-----1be50f121d05--------------------------------
https://medium.com/@ps2?source=post_page-----1be50f121d05--------------------------------

